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Abstract

We represent properties of actions in a logic programming language

that uses both classical negation and negation as failure. The

method is applicable to temporal projection problems with incomplete

information, as well as to reasoning about the past. It is proved to be

sound relative to a semantics of action based on states and transition

functions.
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1 Introduction

This paper extends the work of Eshghi and Kowalski [6], Evans [7] and Apt

and Bezem [1] on representing properties of actions in logic programming

languages with negation as failure.

Our goal is to overcome some of the limitations of the earlier work.

The existing formalizations of action in logic programming are adequate for

only the simplest kind of temporal reasoning|\temporal projection." In a

temporal projection problem, we are given a description of the initial state

of the world, and use properties of actions to determine what the world

will look like after a series of actions is performed. Moreover, the existing

formalizations can be used for temporal projection only in the cases when

the given description of the initial state is complete. The reason for that

is that these formalizations use the semantics of logic programming which

automatically apply the \closed world assumption" to each predicate.

We are interested here in temporal reasoning of a more general kind,

when the values of some 
uents

1

in one or more situations are given, and

the goal is to derive other facts about the values of 
uents. Besides temporal

projection, this class of reasoning problems includes, for instance, the cases

when we want to use information about the current state of the world for

1

A 
uent is something that may depend on the situation, as, for instance, the location

of a moveable object [24]. In particular, propositional 
uents are assertions that can be

true or false depending on the situation.
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answering questions about the past.

2

The view of logic programming accepted in this paper is strictly

declarative. The adequacy of a representation of a body of knowledge in

a logic programming language means, to us, adequacy with respect to the

declarative semantics of that language. In fact, the language of \extended

logic programs" used in this paper is a subset of the system of default logic

from [30], and our work can be viewed as a development of the approach

to temporal reasoning based on nonnormal defaults [25]. The possibility

of using the logic programs proposed in this paper for the automation of

temporal reasoning, based on program transformations and the XOLDTNF

metainterpreter [4], is demonstrated in the forthcoming paper [20].

Two parts of this paper may be of more general interest.

First, we introduce here a simple declarative language for describing

actions, called A. Traditionally, ideas on representing properties of actions

in classical logic or nonmonotonic formalisms are explained on speci�c

examples, such as the \Yale shooting problem" from [14]. Competing

approaches are evaluated and compared in terms of their ability to handle

such examples. We propose to supplement the use of examples by a di�erent

method. A particular methodology for representing action can be formally

described as a translation from A, or from a subset or a superset of A, into

2

One possible way to represent reasoning about the past is to treat it as fundamentally

di�erent from temporal projection, and interpret it as \explanation" and \abduction" [33].

Our approach is more symmetric; we treat both forms of reasoning as deductive.
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a \target language"|for instance, into a language based on classical logic or

on circumscription, or into a logic programming language.

Our method for describing properties of actions in logic programming

is presented here as a translation from A into the language of extended

logic programs, and its soundness is the main technical result of the paper.

A counterexample is given showing that the translation is incomplete. A

possible way of achieving completeness is discussed in the last section.

Second, the proof of the main theorem depends on a relationship between

stable models [11] and signings [18], that may be interesting as a part of the

general theory of logic programming.

The language A is introduced in Section 2, and Section 3 is a brief review

of extended logic programs. Our translation from A into logic programming

is de�ned in Section 4, and the soundness theorem is stated in Section 5.

Section 6 contains the lemmas that relate stable models to signings, and in

Section 7 the proof of the soundness theorem is presented.

2 A Language for Describing Actions

A description of an action domain in the language A consists of \proposi-

tions" of two kinds. A \value proposition" speci�es the value of a 
uent in

a particular situation|either in the initial situation, or after performing a

sequence of actions. An \e�ect proposition" describes the e�ect of an action

on a 
uent.

4
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We begin with two disjoint nonempty sets of symbols, called 
uent names

and action names. A 
uent expression is a 
uent name possibly preceded by

:. A value proposition is an expression of the form

F after A

1

; : : : ;A

m

; (1)

where F is a 
uent expression, and A

1

,: : :,A

m

(m � 0) are action names. If

m = 0, we will write (1) as

initially F:

An e�ect proposition is an expression of the form

A causes F if P

1

; : : : ; P

n

; (2)

where A is an action name, and each of F;P

1

; : : : ; P

n

(n � 0) is a 
uent

expression. About this proposition we say that it describes the e�ect of A

on F , and that P

1

; : : : ; P

n

are its preconditions. If n = 0, we will drop if and

write simply

A causes F:

A proposition is a value proposition or an e�ect proposition. A domain

description, or simply domain, is a set of propositions (not necessarily �nite).

Example 1. The Fragile Object domain, motivated by an example from

[32], has the 
uent names Holding , Fragile and Broken, and the action Drop.

It consists of two e�ect propositions:

Drop causes :Holding if Holding ;

Drop causes Broken if Holding ;Fragile:
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Example 2. The Yale Shooting domain, motivated by the example from

[14] mentioned above, is de�ned as follows. The 
uent names are Loaded

and Alive ; the action names are Load, Shoot and Wait . The domain is

characterized by the propositions

initially :Loaded;

initially Alive ;

Load causes Loaded;

Shoot causes :Alive if Loaded;

Shoot causes :Loaded:

Example 3. The Murder Mystery domain, motivated by an example from

[2], is obtained from the Yale Shooting domain by substituting

:Alive after Shoot;Wait (3)

for the proposition initially :Loaded.

Example 4. The Stolen Car domain, motivated by an example from [16],

has one 
uent name Stolen and one action name Wait , and is characterized

by two propositions:

initially :Stolen ;

Stolen afterWait;Wait ;Wait:

To describe the semantics of A, we will de�ne what the \models" of a

domain description are, and when a value proposition is \entailed" by a

domain description.

A state is a set of 
uent names. Given a 
uent name F and a state �, we

say that F holds in � if F 2 �; :F holds in � if F 62 �. A transition function

6
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is a mapping � of the set of pairs (A;�), where A is an action name and �

is a state, into the set of states. A structure is a pair (�

0

;�), where �

0

is a

state (the initial state of the structure), and � is a transition function.

For any structure M and any action names A

1

; : : : ; A

m

, by M

A

1

;:::;A

m

we

denote the state

�(A

m

;�(A

m�1

; : : : ;�(A

1

; �

0

) : : :));

where � is the transition function of M , and �

0

is the initial state of M . We

say that a value proposition (1) is true in a structure M if F holds in the

state M

A

1

;:::;A

m

, and that it is false otherwise. In particular, a proposition of

the form initially F is true in M i� F holds in the initial state of M .

A structure (�

0

;�) is a model of a domain description D if every value

proposition from D is true in (�

0

;�), and, for every action name A, every


uent name F , and every state �, the following conditions are satis�ed:

(i) if D includes an e�ect proposition describing the e�ect of A on F whose

preconditions hold in �, then F 2 �(A;�);

(ii) ifD includes an e�ect proposition describing the e�ect of A on :F whose

preconditions hold in �, then F 62 �(A;�);

(iii) if D does not include such e�ect propositions, then F 2 �(A;�) i�

F 2 �.

It is clear that there can be at most one transition function � satisfying

conditions (i){(iii). Consequently, di�erent models of the same domain
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description can di�er only by their initial states. For instance, the Fragile

Object domain (Example 1) has 8 models, whose initial states are the subsets

of

fHolding ;Fragile;Brokeng;

in each model, the transition function is de�ned by the equation

�(Drop; �) =

�

� n fHoldingg [ fBrokeng; if Holding ;Fragile 2 �,

� n fHoldingg; otherwise.

A domain description is consistent if it has a model, and complete if it has

exactly one model. The Fragile Object domain is consistent, but incomplete.

The Yale Shooting domain (Example 2) is complete; its only model is de�ned

by the equations

�

0

= fAliveg;

�(Load; �) = � [ fLoadedg;

�(Shoot; �) =

�

� n fLoaded;Aliveg; if Loaded 2 �,

�; otherwise,

�(Wait; �) = �:

The Murder Mystery domain (Example 3) is complete also; it has the same

transition function as Yale Shooting, and the initial state fLoaded;Aliveg.

The Stolen Car domain (Example 4) is inconsistent.

A value proposition is entailed by a domain description D if it is true in

every model of D. For instance, Yale Shooting entails

:Alive after Load;Wait;Shoot:

Murder Mystery entails, among others, the propositions

initially Loaded

8
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and

:Alive after Wait;Shoot :

Note that the last proposition di�ers from (3) by the order in which the two

actions are executed. This example illustrates the possibility of reasoning

about alternative \possible futures" of the initial situation.

The language A is adequate for formalizing several interesting domains.

Note that the domains from Examples 1{3, although very simple, have been

actually proposed in the literature as counterexamples demonstrating the

inadequacy and limitations of some earlier approaches to formalizing action.

In many respects, however, the expressive power of A is rather limited. Some

ways of extending A are mentioned in Section 8.

The entailment relation of A is nonmonotonic, in the sense that adding

an e�ect proposition to a domain description D may nonmonotonically

change the set of propositions entailed by D. (This cannot happen when

a value proposition is added.) For this reason, a modular translation from

A into another declarative language (that is, a translation that processes

propositions one by one) can be reasonably adequate only if this other

language is nonmonotonic also.

3 Extended Logic Programs

Representing incomplete information in traditional logic programming lan-

guages is di�cult. Given a ground query, a traditional two-valued logic
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programming system can produce only one of two answers, yes or no; it will

never tell us that the truth value of the query cannot be determined on the

basis of the information included in the program.

Extended logic programs, introduced in [12], are, in this sense, di�erent.

The language of extended programs distinguishes between negation as failure

not and classical negation :. The expression :A, where A is an atom,

means, intuitively, \A is false"; the expression not A is interpreted as \there

is no evidence that A is true." There is a clear di�erence between these two

assertions if the program gives no information about the truth value of A.

The general form of an extended rule is

L

0

 L

1

; : : : ; L

m

;not L

m+1

; : : : ;not L

n

; (4)

where each L

i

is a literal, that is, an atom possibly preceded by :.

An extended program is a set of such rules. Here is an example:

p;

:q p;

r :p;

t :q;not s;

u not :u:

(5)

Intuitively, these rules say:

p is true

3

;

q is false if p is true;

r is true if p is false;

t is true if q is false and there is no evidence that s is true;

u is true if there is no evidence that it is false.

10
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The answers that an implementation of this language is supposed to give

to the ground queries are:

p : yes;

q : no;

r : unknown;

s : unknown;

t : yes;

u : yes:

The semantics of extended logic programs de�nes when a set of ground

literals is an answer set of a program [12]. A rule with variables is treated as

shorthand for the set of its ground instances. For extended programs without

variables, answer sets are de�ned in two steps.

First, let � be an extended program without variables that doesn't

contain not . The answer set of � is the smallest set S of ground literals

such that

(i) for any rule L

0

 L

1

; : : : ; L

m

from �, if L

1

; : : : ; L

m

2 S, then L

0

2 S;

(ii) if S contains a pair of complementary literals, then S is the set of all

ground literals.

Now let � be any extended program without variables. For any set S of

ground literals, let �

S

be the extended program obtained from � by deleting

(i) each rule that has an expression not L in its body with L 2 S, and

(ii) all expressions of the form not L in the bodies of the remaining rules.

11
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Clearly, �

S

doesn't contain not , so that its answer set is already de�ned. If

this answer set coincides with S, then we say that S is an answer set of �.

It is easy to check, for instance, that the program (5) has one answer set,

fp;:q; t; ug.

The answer sets of a program can be easily characterized in terms of

default logic. We will identify the rule (4) with the default

L

1

^ : : : ^ L

m

: L

m+1

; : : : ; L

n

= L

0

(6)

(L stands for the literal complementary to L). Thus every extended program

can be viewed as a default theory. The answer sets of a program are simply

its extensions in the sense of default logic, intersected with the set of ground

literals ([12], Proposition 3).

Two other approaches to the semantics of logic programs with two kinds

of negation are proposed in [29] and [28]. In the context of this paper, they

can be shown to lead to the same result as the answer set semantics.

4 Describing Actions by Logic Programs

Now we are ready to de�ne the translation � from A into the language of

extended programs.

About two di�erent e�ect propositions we say that they are similar if

they di�er only by their preconditions. Our translation method is de�ned

for any domain description that does not contain similar e�ect propositions.

12
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This condition prohibits, for instance, combining in the same domain such

propositions as

Shoot causes :Alive if Loaded;

Shoot causes :Alive if VeryNervous:

(VeryNervous refers to the victim, of course|not to the gun.)

Let D be a domain description without similar e�ect propositions. The

corresponding logic program �D uses variables of three sorts: situation

variables s; s

0

; : : :, 
uent variables f; f

0

; : : :, and action variables a; a

0

; : : :.

4

Its only situation constant is S0; its 
uent constants and action constants

are, respectively, the 
uent names and action names of D. There are also

some predicate and function symbols; the sorts of their arguments and values

will be clear from their use in the rules below.

The program �D will consist of the translations of the individual

propositions from D and the four standard rules:

Holds(f;Result(a; s)) Holds(f; s);not Noninertial (f; a; s);

:Holds(f;Result(a; s)) :Holds(f; s);not Noninertial (f; a; s);

(7)

Holds(f; s) Holds(f;Result(a; s));not Noninertial (f; a; s);

:Holds(f; s) :Holds(f;Result(a; s));not Noninertial (f; a; s):

(8)

These rules are motivated by the \commonsense law of inertia," according to

which the value of a 
uent after performing an action is normally the same

as before. The rules (7) allow us to apply the law of inertia in reasoning

4

Using a sorted language implies, �rst of all, that all atoms in the rules of the program

are formed in accordance with the syntax of sorted predicate logic. Moreover, when we

speak of an instance of a rule, it will be always assumed that the terms substituted for

variables are of appropriate sorts.
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\from the past to the future": the �rst|when a 
uent is known to be true

in the past, and the second|when it is known to be false. The rules (8)

play the same role for reasoning \from the future to the past." The auxiliary

predicate Noninertial is essentially an \abnormality predicate" [22].

Now we will de�ne how � translates value propositions and e�ect

propositions. The following notation will be useful: For any 
uent name

F ,

jF j is F; j:F j is F;

and, if t is a situation term, Holds(:F; t) stands for :Holds(F; t). The last

convention allows us to write Holds(F; t) even when F is a 
uent name

preceded by :. Furthermore, if A

1

,: : :,A

m

are action names, [A

1

; : : : ;A

m

]

stands for the term

Result(A

m

;Result(A

m�1

; : : : ;Result(A

1

; S0) : : :)):

It is clear that every situation term without variables can be represented in

this form.

The translation of a value proposition (1) is

Holds(F; [A

1

; : : : ;A

m

]): (9)

For instance, �(initially Alive) is

Holds(Alive ; S0);

and �(:Alive after Shoot) is

:Holds(Alive ;Result(Shoot; S0)):

14
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The translation of an e�ect proposition (2) consists of 2n + 2 rules. The

�rst of them is

Holds(F;Result(A; s)) Holds(P

1

; s); : : : ;Holds(P

n

; s): (10)

It allows us to prove that F will hold after A, if the preconditions are satis�ed.

The second rule is

Noninertial (jF j; A; s) not Holds(P

1

; s); : : : ;not Holds(P

n

; s) (11)

(Holds(P

i

; s) is the literal complementary to Holds(P

i

; s).) It disables the

inertia rules (7), (8) in the cases when f can be a�ected by a. Without this

rule, the program would be contradictory: We would prove, using a rule of

the form (10), that an unloaded gun becomes loaded after the action Load,

and also, using the second of the rules (7), that it remains unloaded!

Note the use of not in (11). We want to disable the inertia rules not

only when the preconditions for the change in the value of F are known

to hold, but whenever there is no evidence that they do not hold. If, for

instance, we do not know whether Loaded currently holds, then we do not

want to conclude by inertia that the value of Alive will remain the same after

Shoot . We cannot draw any conclusions about the new value of Alive . If we

replaced the body of (11) by Holds(P

1

; s); : : : ;Holds(P

n

; s), the translation

would become unsound.

Besides (10) and (11), the translation of (2) contains, for each i (1 � i �

15
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n), the rules

Holds(P

i

; s) Holds(F; s);Holds(F;Result(A; s)) (12)

and

Holds(P

i

; s) Holds(F;Result(A; s));

Holds(P

1

; s); : : : ;Holds(P

i�1

; s);

Holds(P

i+1

; s); : : : ;Holds(P

n

; s):

(13)

The rules (12) justify the following form of reasoning: If the value of F has

changed after performing A, then we can conclude that the preconditions

were satis�ed when A was performed. These rules would be unsound in the

presence of similar propositions. The rules (13) allow us to conclude that a

precondition was false from the fact that performing an action did not lead

to the result described by an e�ect axiom, while all other preconditions were

true.

We will illustrate the translation process by applying it to Yale Shooting

(Example 2). The translation of that domain includes, in addition to (7) and

(8), the following rules:

Y 1. :Holds(Loaded; S0).

Y 2. Holds(Alive ; S0).

Y 3. Holds(Loaded;Result(Load; s)).

Y 4. Noninertial (Loaded;Load; s).

Y 5. :Holds(Alive ;Result(Shoot ; s)) Holds(Loaded; s).

Y 6. Noninertial (Alive ;Shoot; s) not :Holds(Loaded; s).

16
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Y 7. Holds(Loaded; s) Holds(Alive ; s);:Holds(Alive;Result(Shoot ; s)).

Y 8. :Holds(Loaded; s) Holds(Alive ;Result(Shoot ; s)).

Y 9. :Holds(Loaded;Result(Shoot ; s)).

Y 10. Noninertial (Loaded;Shoot; s).

It is instructive to compare this set of rules with the formalization of Yale

Shooting given by Apt and Bezem [1], who were only interested in temporal

projection problems, and did not use classical negation. Instead of our four

inertia rules, they have one, corresponding to the �rst of the rules (7). In

addition, their program includes counterparts of Y 2, Y 3, Y 5 and Y 6. It does

not tell us whether Loaded holds in the initial situation, but the negative

answer to this question follows by the closed world assumption. Their rule

corresponding to Y 5 does not have : in the head, of course; instead, the

new 
uent Dead is used. In their counterpart of Y 6, the combination not :

is missing; this does not lead to any di�culties, because the closed world

assumption is implicitly postulated.

5 Soundness Theorem

We say that a ground literal L is entailed by an extended logic program, if

it belongs to all its answer sets (or, equivalently, to all its extensions in the

sense of default logic). Using this notion of entailment and the entailment

relation for the language A introduced in Section 2, we can state a result

17
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expressing the soundness of the translation �.

Soundness Theorem. LetD be a domain description without similar e�ect

propositions. For any value proposition P , if �D entails �P , then D entails

P .

For an inconsistent D, the statement of the soundness theorem is trivial,

because such D entails every value proposition. For consistent domain

descriptions, the statement of the theorem is an immediate consequence of

the following lemma, which will be proved in Section 7:

Soundness Lemma. Let D be a consistent domain description without

similar e�ect propositions. There exists an answer set Z of �D such that,

for any value proposition P , if �P 2 Z then D entails P .

Note that the lemma asserts the possibility of selecting Z uniformly for

all P ; this is more than is required for the soundness theorem.

The set Z from the statement of the lemma is obviously consistent,

because a consistent domain description cannot entail two complementary

value propositions. Consequently, if D is consistent and does not include

similar value propositions, then �D has a consistent answer set.

The converse of the soundness theorem does not hold, so that the

translation � is incomplete. This following simple counterexample belongs

to Thomas Woo (personal communication). Let D be the domain with one

18
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uent name F and one action name A, characterized by two propositions:

F after A;

A causes F if F:

It is clear that D entails initially F . But the translation of this proposition,

Holds(F; S0), is not entailed by �D. Indeed, it is easy to verify that the set

of all positive ground literals other than Holds(F; S0) is an answer set of �D.

6 Answer Sets and Signings

To prove the soundness lemma, we need the following de�nition. Let � be a

general logic program (that is, an extended program that does not contain

classical negation). A signing for � is any set S of ground atoms such that,

for any ground instance

B

0

 B

1

; : : : ; B

m

;not B

m+1

; : : : ;not B

n

of any rule from �, either

B

0

; B

1

; : : : ; B

m

2 S; B

m+1

; : : : ; B

n

62 S

or

B

0

; B

1

; : : : ; B

m

62 S; B

m+1

; : : : ; B

n

2 S:

5

For example, fpg is a signing for the program

p not q; q not p; r q:

5

This is slightly di�erent from the original de�nition [18].

19



www.manaraa.com

In this section we show that the answer sets of a general program �

which has a signing S can be characterized in terms of the �xpoints of a

monotone operator. Speci�cally, for any set X of ground atoms, let �X be

the symmetric di�erence of X and S:

�X = (X n S) [ (S nX):

Obviously, � is one to one. Moreover, it is clear that � is an involution:

�

2

X = f[(X n S) [ (S nX)] n Sg [ fS n [(X n S) [ (S nX)]g

= (X n S) [ (S \X)

= X:

We will de�ne a monotone operator � such that any X is an answer set of �

if and only if �X is a �xpoint of �.

Recall that, for general logic programs, the notion of an answer set (or

\stable model") can be de�ned by means of the following construction [11].

Let � be a general logic program, with every rule replaced by all its ground

instances. The reduct �

X

of � relative to a setX of ground atoms is obtained

from � by deleting

(i) each rule that has an expression of the form not B in its body with

B 2 X, and

(ii) all expressions of the form not B in the bodies of the remaining rules.

Clearly, �

X

is a positive program, and we can consider its \minimal model"|

the smallest set of ground atoms closed under its rules. If this set coincides

with X, then X is an answer set of �.
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This condition can be expressed by the equation X = ��

X

, where � is

the operator that maps any positive program to its minimal model.

Let S be a signing for �. The operator � is de�ned by the equation

�X = ���

�X

:

Lemma 1. A setX of ground atoms is an answer set of � i� �X is a �xpoint

of �.

Proof. By the de�nition of �, �X is a �xpoint of � i�

���

�

2

X

= �X:

Since � is one-to-one and an involution, this is equivalent to

��

X

= X:

Note that, since � is an involution, Lemma 1 can be also stated as follows:

X is an answer set of � i� X = �Y for some �xpoint Y of �.

Lemma 2. The operator � is monotone.

Proof. Let �

1

be the set of all rules from � whose heads belong to S, and

let �

2

be the set of all remaining rules. Clearly, for any X,

�

X

= �

X

1

[�

X

2

:

21



www.manaraa.com

Since S is a signing for �, all atoms occurring in �

X

1

belong to S, and all

atoms occurring in �

X

2

belong to the complement of S. Consequently, �

X

1

and �

X

2

are disjoint, and

��

X

= ��

X

1

[ ��

X

2

:

Furthermore, for any expression of the form not B occurring in �

1

, B does

not belong to S; consequently,

�

X

1

= �

XnS

1

:

Similarly, for any expression of the form not B occurring in �

2

, B belongs

to S, so that

�

X

2

= �

X\S

2

:

Consequently, for every X,

��

X

= ��

XnS

1

[ ��

X\S

2

:

In particular,

��

�X

= ��

�XnS

1

[ ��

�X\S

2

:

It is clear from the de�nition of � that

�X n S = X n S;

�X \ S = S nX:

We conclude that

��

�X

= ��

XnS

1

[ ��

SnX

2

:
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By the choice of �

1

and �

2

, ��

XnS

1

is contained in S, and ��

SnX

2

is disjoint

with S. Consequently,

��

�X

n S = ��

SnX

2

;

S n ��

�X

= S n ��

XnS

1

:

Hence

�X = ���

�X

= (��

�X

n S) [ (S n ��

�X

) = ��

SnX

2

[ (S n ��

XnS

1

):

Since � is monotone, and the reduct operators X 7! �

X

i

are antimonotone,

it follows that � is monotone.

Having proved Lemmas 1 and 2, we can use properties of the �xpoints of

monotone operators given by the Knaster-Tarski theorem [34] to study the

answer sets of a program with a signing. The Knaster-Tarski theorem asserts,

for instance, that every monotone operator has a �xpoint; this gives a new,

and more direct, proof of the fact that every general program with a signing

has at least one answer set.

6

Moreover, it asserts that a monotone operator

has a least �xpoint, which is also its least pre-�xpoint. (A pre-�xpoint of �

is any set X such that �X � X.) This characterization of the least �xpoint

of � is used in the proof of the soundness lemma below.

6

The existence of answer sets for such programs, and for programs of some more general

types, was established by Phan Minh Dung [5] and Fran�cois Fages [8].
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7 Proof of the Soundness Lemma

The results of the previous section are not directly applicable to programs

with classical negation. It is known, however, that any extended program �

can be converted into a closely related program without classical negation,

as follows [12]. For each predicate P occurring in �, select a new predicate

P

0

of the same arity. The atom P

0

(: : :) is the positive form of the negative

literal :P (: : :); every positive literal is, by de�nition, its own positive form.

The positive form of a literal L is denoted by L

+

. For any set X of literals,

X

+

stands for the set of the positive forms of the elements of X. For any

program �, its positive form is the program obtained from � by replacing

each rule (4) by

L

+

0

 L

+

1

; : : : ; L

+

m

;not L

+

m+1

; : : : ;not L

+

n

:

According to Proposition 2 from [12], a consistent set X of ground literals is

an answer set of � if and only if X

+

is an answer set of the positive form of

�.

In particular, the positive form of �D has three predicate symbols: Holds,

Holds

0

and Noninertial . (There is no Noninertial

0

, because the predicate

Noninertial does not occur in �D under :.) Its rules are obtained from the

rules of �D by substituting Holds

0

for :Holds. For instance, the inertia rules

(7), (8) become

Holds(f;Result(a; s)) Holds(f; s);not Noninertial (f; a; s);

Holds

0

(f;Result(a; s)) Holds

0

(f; s);not Noninertial (f; a; s);

(14)
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Holds(f; s) Holds(f;Result(a; s));not Noninertial (f; a; s);

Holds

0

(f; s) Holds

0

(f;Result(a; s));not Noninertial (f; a; s):

(15)

The rules (11) turn into

Noninertial (jF j; A; s) not Holds(P

1

; s)

+

; : : : ;not Holds(P

n

; s)

+

: (16)

(The predicate symbol in the atom Holds(P

k

; s)

+

is either Holds or Holds

0

,

depending on whether or not P

k

includes a negation sign.)

In the rest of this section, D is a consistent domain description such that

every two similar value propositions from D are disjoint, and � stands for

the positive form of �D.

Let S be the set of all ground atoms that contain the predicate symbol

Noninertial . It is easy to see that S is a signing for �. By � and � we denote

the operators de�ned, for these � and S, as in the previous section.

Recall that our goal is to �nd an answer set Z of �D such that, for any

value proposition P , if �P 2 Z, then D entails P . This set Z will be de�ned

by the condition Z

+

= �Y , where Y is the least �xpoint of �. It is easy to

understand why this is a reasonable choice. Lemma 1 tells us that �Y is an

answer set of �; it follows that Z is indeed an answer set of �D (provided

that it is consistent). On the other hand, since Y is the least �xpoint of

�, �Y includes \few" atoms beginning with Holds or Holds

0

(it is clear that

such an atom belongs to �Y i� it belongs to Y ). For this reason, Z includes

\few" literals with the predicate symbol Holds, which makes the assumption

�P 2 Z in the statement of the soundness lemma particlularly strong.
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For any model M of D, let h(M) stand for the set of atoms of the form

(�P )

+

, where P is a value proposition that is true in M . It is clear that

the predicate symbols in these atoms are Holds and Holds

0

. By n(M) we

denote the set of atoms of the form Noninertial (F;A; [A

1

; : : : ;A

m

]), where

F is a 
uent name and A;A

1

; : : : ; A

m

are action names, such that the value

propositions

F after A

1

; : : : ;A

m

;

F after A

1

; : : : ;A

m

;A

(17)

are either both true in M or both false in M . Finally, de�ne

X

M

= h(M) [ n(M):

Note that X

M

n S = h(M) and S nX

M

= S n n(M), so that

�X

M

= h(M) [ (S n n(M)): (18)

Our goal is to show that X

M

is a pre-�xpoint of �, that is,

�X

M

� X

M

:

(Lemma 5 below). To this end, we will check that X

M

contains both �X

M

\S

and �X

M

n S.

Lemma 3. For any model M of D, �X

M

\ S � X

M

.

Proof. Assume that B 2 �X

M

\ S. Then B 2 S, which means that B

has the form Noninertial (F;A; [

~

A]), where F is a 
uent name, A is an action

names, and

~

A is a tuple A

1

; : : : ;A

m

of action names. Assume that B 62 X

M

.
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Then B 62 n(M), so that one of the atoms (17) is true in M , and the other

false. This can be also expressed by saying that F holds in exactly one of

the two states

M

~

A

; �(A;M

~

A

);

where � is the transition function of M . This is only possible if D includes

an e�ect proposition describing the e�ect of A on F or on :F , whose

preconditions hold in M

~

A

. Consider the rule of the type (16) corresponding

to this e�ect proposition:

Noninertial (F;A; s) not Holds(P

1

; s)

+

; : : : ;not Holds(P

n

; s)

+

:

The ground instance of this rule, obtained by substituting [

~

A] for s, can be

written as

B  not Holds(P

1

; [

~

A])

+

; : : : ;not Holds(P

n

; [

~

A])

+

: (19)

Since all preconditions P

i

hold in M

A

1

;:::;A

m

, each of the value propositions

P

i

after

~

A

is true in M . It follows that the atoms Holds(P

i

; [

~

A])

+

do not belong to

h(M). By (18), we can conclude that they do not belong to �X

M

either.

Consequently, the reduct �

�X

M

includes the rule obtained by removing all

expressions

not Holds(P

i

; [

~

A])

+
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from (19), so that B 2 �

�X

M

, and hence B 2 ��

�X

M

. Since B belongs also

to S, it follows that

B 62 ���

�X

M

= �X

M

;

contrary to the assumption that B 2 �X

M

\ S.

Lemma 4. For any model M of D, ��

�X

M

� h(M) [ S.

Proof. It is su�cient to verify that h(M) [ S is closed under all rules of

�

�X

M

. There are rules of two kinds in this program: those in which every

atom belongs to S, and those in which every atom belongs to the complement

of S. Consequently, we need to check that S is closed under all rules of the

�rst kind, and h(M) is closed under all rules of the second kind. The rules of

the �rst kind are simply ground atoms beginning with Noninertial , so that

the �rst claim is trivial. Let R be a rule of the second kind. It is obtained

from an instance of the positive form of one of the rules of �D by deleting

all expressions of the form not B from its body. Consider several cases,

depending on the form of this rule of �D.

Case 1: R is obtained from one of the rules (7), (8). Then the positive

form of this rule is one of the rules (14), (15). The ground instances of these

rules have the forms

Holds(F; [

~

A;A]) Holds(F; [

~

A]);not Noninertial (F;A; [

~

A]);

Holds

0

(F; [

~

A;A]) Holds

0

(F; [

~

A]);not Noninertial (F;A; [

~

A]);

Holds(F; [

~

A]) Holds(F; [

~

A;A]);not Noninertial (F;A; [

~

A]);

Holds

0

(F; [

~

A]) Holds

0

(F; [

~

A;A]);not Noninertial (F;A; [

~

A]);

where

~

A is a tuple A

1

; : : : ;A

m

of action names. Consequently, R has one of
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the forms

Holds(F; [

~

A;A]) Holds(F; [

~

A]);

Holds

0

(F; [

~

A;A]) Holds

0

(F; [

~

A]);

Holds(F; [

~

A]) Holds(F; [

~

A;A]);

Holds

0

(F; [

~

A]) Holds

0

(F; [

~

A;A]);

that is,

�(F after

~

A;A)

+

 �(F after

~

A)

+

;

�(:F after

~

A;A)

+

 �(:F after

~

A)

+

;

�(F after

~

A)

+

 �(F after

~

A;A)

+

;

�(:F after

~

A)

+

 �(:F after

~

A;A)

+

:

(20)

Moreover, Noninertial (F;A; [

~

A]) 62 �X

M

, because otherwise the rules would

not be included in the reduct �

�X

M

. Since

Noninertial (F;A; [

~

A]) 2 S;

it follows that

Noninertial (F;A; [

~

A]) 2 S n �X

M

= S \X

M

= n(M):

By the de�nition of n(M), this means that the the value propositions (17)

are either both true in M or both false in M . It follows that if the body of

one of the rules (20) belongs to h(M), then so does its head.

Case 2: R is obtained from the translation of one of the value propositions

P from D. Then R is (�P )

+

. Since M is a model of D, P is true in M , and

(�P )

+

2 h(M).

It remains to consider the cases when R is obtained from one of the rules

(10), (12) and (13), corresponding to some e�ect proposition P fromD. (The
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rules obtained from (11) belong to the �rst kind, discussed at the beginning

of the proof.) By � we will denote the transition function of M .

Case 3: R is obtained from (10). Then it has the form

Holds(F; [

~

A;A])

+

 Holds(P

1

; [

~

A])

+

; : : : ;Holds(P

n

; [

~

A])

+

;

that is,

�(F after

~

A;A)

+

 �(P

1

after

~

A)

+

; : : : ; �(P

n

after

~

A)

+

: (21)

If all atoms in the body of (21) belong to h(M), then all preconditions

P

1

; : : : ; P

n

hold in the state M

~

A

. Consequently, F holds in the state

�(A;M

~

A

), which means that the head of (21) belongs to h(M).

Case 4: R is obtained from the rule (12). Assume for de�niteness that F

is a 
uent name not preceded by :. R has the form

Holds(P

i

; [

~

A])

+

 Holds(:F; [

~

A])

+

;Holds(F; [

~

A;A])

+

;

that is,

�(P

i

after

~

A)

+

 �(:F after

~

A)

+

; �(F after

~

A;A)

+

: (22)

Assume that both atoms in the body of (22) belong to h(M). Then F

does not hold in the state M

~

A

and holds in the state �(A;M

~

A

). It follows

that D includes an e�ect proposition P

0

, describing the e�ect of A on F

whose preconditions hold in M

~

A

. But the e�ect proposition P , from which

R was generated, describes the e�ect of F on A also. Since D does not
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contain similar e�ect propositions, it follows that P = P

0

. Consequently, the

preconditions of P hold in the state M

~

A

, and the head of (22) belongs to

h(M).

Case 5: R is obtained from the rule (13). Assume for de�niteness that P

i

and F are 
uent names not preceded by :. R has the form

Holds(:P

i

; [

~

A])

+

 Holds(:F; [

~

A;A])

+

;

Holds(P

1

; [

~

A])

+

; : : : ;Holds(P

i�1

; [

~

A])

+

;

Holds(P

i+1

; [

~

A])

+

; : : : ;Holds(P

n

; [

~

A])

+

;

that is,

�(:P

i

after

~

A)

+

 �(:F after

~

A;A)

+

;

�(P

1

after

~

A)

+

; : : : ; �(P

i�1

after

~

A)

+

;

�(P

i+1

after

~

A)

+

; : : : ; �(P

n

after

~

A)

+

:

(23)

Assume that all atoms in the body of (23) belong to h(M). Then F does not

holds in the state �(A;M

~

A

). This is only possible when at least one of the

preconditions P

1

,: : :,P

n

does not hold in the state M

~

A

. But all preconditions

other than P

i

hold in this state; consequently, P

i

does not hold, which means

that the head of (23) belongs to h(M).

Lemma 5. For any model M of D, �X

M

� X

M

.

Proof. By the de�nitions of � and � and Lemma 4,

�X

M

n S = ���

�X

M

n S = ��

�X

M

n S � (h(M) [ S) n S � h(M) � X

M

:

From this inclusion and Lemma 3,

�X

M

= (�X

M

\ S) [ (�X

M

n S) � X

M

:
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Lemma 6. Let Y be the least �xpoint of �. For any value proposition P , if

(�P )

+

2 �Y , then D entails P .

Proof. Assume that (�P )

+

2 �Y , and take any model M of D. By the

Knaster-Tarski theorem, Y is the least pre-�xpoint of �; by Lemma 5, X

M

is

a pre-�xpoint of �. Consequently, Y � X

M

. By the choice of S, (�P )

+

62 S.

Consequently,

(�P )

+

2 �Y nS = [(Y nS)[ (S nY )]nS = Y nS � Y � X

M

= h(M)[n(M):

Since the predicate symbol in (�P )

+

is Holds or Holds

0

, it follows that

(�P )

+

2 h(M), so that P is true in M .

Now we are ready to prove the soundness lemma. Assume that D is

consistent. Consider the set Z of literals such that Z

+

= �Y , where Y

is the least �xpoint of �. By Lemma 1, Z

+

is an answer set of �. Case

1: Z is consistent. Since Z

+

is an answer set of the positive form of

�D, we can conclude that Z is an answer set of �D. If �D entails �P ,

then �P 2 Z, and consequently (�P )

+

2 Z

+

= �Y . By Lemma 6, it

follows that D entails P . Case 2: Z is inconsistent. This means that Z

contains a pair of complementary literals L, L. Since � does not contain

Noninertial

0

, its answer set Z

+

does not contain Noninertial

0

either, so that

Z does not contain :Noninertial . Consequently, the predicate symbol in L

and L has to be Holds . Then these literals can be obtained by applying �

to two complementary value propositions. By the choice of X, these value
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propositions are both entailed by D. This is impossible, in view of the

consistency of D.

8 Conclusions and Future Work

This paper is the �rst step in the development of high-level languages

designed speci�cally for representing actions. The syntax and semantics

of A precisely describe the class of action domains under consideration

and the intended ontology of action. The representation of a particular

domain in A can be viewed as a high-level speci�cation for the task

of formalizing this domain in logic programming or another logic-based

formalism. The soundness and completeness of each formalization become

precisely stated mathematical questions. The possibilities and limitations

of di�erent representation methods can be compared in a precise fashion.

For instance, in [15] this approach is used to prove the equivalence of the

methods for formalizing actions proposed earlier by Pednault [26], Reiter

[31] and Baker [2] for the domains representable in A.

On the other hand, this paper is one of the �rst experiments (along with

[17], [27], [10]) on using extended logic programs for representing knowledge.

Not much is known yet about mathematical properties of extended programs.

For this reason, in this initial experiment, the source language A was

deliberately made quite simple, and we did not try to make the translation

complete. As we have seen, even the soundness theorem limited to this class
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of domains turns out to be nontrivial.

The next step will be to make the translation complete and applicable

to domain descriptions containing similar propositions. It appears that both

goals can be achieved by using the more expressive language of disjunctive

programs [12] as the target language for the translation. The head of a

disjunctive rule is a list of literals separated by occurrences of the "epistemic

disjunction" symbol j. For example, each of the rules (12) can be replaced

by the more powerful disjunctive rule

Holds(F; s) j Holds(P

i

; s) Holds(F;Result(A; s)):

This will apparently eliminate the cases of incompleteness similar to the

counterexample from the end of Section 5. Similarly, all n rules (13) can be

replaced by the more intuitive disjunctive rule

Holds(P

1

; s) j : : : j Holds(P

n

; s) Holds(F;Result(A; s)):

Another useful extension of this work made possible by using disjunctive

rules has to do with disjunctive information about the initial situation. In the

dialect of A that allows us to represent such information, a value proposition

may include a disjunction of 
uent expressions (or, more generally, an

arbitrary propositional combination of 
uent names) in place of a single 
uent

expression. For instance, in a "Russian roulette" version of the shooting

example, we have two guns, described by two 
uents, Loaded1 and Loaded2 ,
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and the initial condition can be

initially Loaded1 _ Loaded2 : (24)

In the corresponding logic program, (24) will be represented by the disjunc-

tive rule

Holds(Loaded1 ; S0) j Holds(Loaded2 ; S0):

Extending the semantics of A to this dialect is straightforward. However,

generalizing the soundness theorem to disjunctive value propositions requires

further work on the mathematics of disjunctive programs.

The shooting domain with several guns is one of the cases when \�rst-

order" notation would be more natural than the \propositional" notation of

A. We can write

initially Loaded(Gun1 ) _ Loaded(Gun2 )

instead of (24), and express the main property of shooting by the schema

Shoot(x) causes :Alive if Loaded(x); (25)

where x is a metavariable for the expressions Gun1 , Gun2 . Thus (25) is

viewed as shorthand for the collection of its ground instances, which are

propositions in A; no extension of the semantics of A is needed.

Proposition (25) can be translated into logic programming directly, by

rules like

:Holds(Alive ;Result(Shoot(x); s)) Holds(Loaded(x); s):
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Here x is again a \variable for guns." Indeed, the ground instances of this

rule are identical to the ground instances of the rules

:Holds(Alive ;Result(Shoot(Gun1 ); s)) Holds(Loaded(Gun1 ); s);

:Holds(Alive ;Result(Shoot(Gun2 ); s)) Holds(Loaded(Gun2 ); s);

corresponding to the two instances of (25).

We are working on developing extensions of A capable of expressing richer

ontologies of actions.

The most striking limitation of A is its inability to express domain

constraints. The 
uents represented in A are presumed to be independent,

in the sense that the semantics of A treats any assignment of truth values to

the 
uent constants as a valid state.

Syntactically, constraints will be expressed by propositions of the form

always < formula > :

For instance, we can express that an object cannot occupy two locations at

once by the proposition

always :(At(x; l

1

) ^ At(x; l

2

))

for all x, l

1

, l

2

such that l

1

6= l

2

. Semantically, including constraints will

require that a state be de�ned as a truth assignment to the 
uent constants

that makes all constraint formulas true. Another necessary change in the

semantics is due to the fact that, in the presence of constraints, an action

may have indirect e�ects. For instance, consider the action of moving x from
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l

1

to l

2

. If the only explicitly given e�ect of this action is that it makes

At(x; l

2

) true, we should be able to conclude that it also makes At(x; l

1

) false

(because otherwise a constraint would be violated).

We plan to design and investigate dialects of A in which nondeterministic

actions can be described. In fact, nondeterminism is closely related to the

idea of rami�cations, since the indirect e�ects of an action can be nondeter-

ministic. Almost nothing is currently known about the frame problem in the

presence of nondeterminism. One way to include nondeterminism is to allow

e�ect propositions to contain disjunctions, for instance:

TossCoin causes Heads _ Tails:

Semantically, in either case, nondeterministic transition functions will be

used. In the corresponding logic program, the e�ect of TossCoin will be

expressed by a disjunctive rule.

In [3], the extension of A is introduced in which one can describe the

concurrent execution of actions. In this extension, performing several actions

concurrently can be represented by using a set of action names instead of a

single action name in a proposition, for instance:

Alive after fWaitg fShoot(Gun1 );Load(Gun2 )g;

and the semantics of A is generalized accordingly. The translation to logic

programming presented here is extended to this \concurrent A" in the spirit

of [13].
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The inconsistency of the Stolen Car domain (Example 4) illustrates the

fact that A cannot be used for representing \causal anomalies," or \miracles"

[21]. We plan to address this issue in further work, too. Our preferred

approach to causal anomalies is to view them as evidence of unknown

events that occur concurrently with the given actions and contribute to the

properties of the new situation.

One other dialect of A is described in [19]. It has symbols for temporal

intervals over which actions may occur.

A referee has pointed out to us that there is a simple and elegant

translation from A into a form of abductive logic programming with integrity

constraints, which, inlike the method of [33], handles all forms of temporal

reasoning in a uniform way. It would be interesting to extend this translation

to more expressive dialects of A also.
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